3D Face Recognition Using Geodesic Facial Curves to Handle Expression, Occlusion and Pose Variations
نویسنده
چکیده
this paper illustrates the use of radial facial curves on 3D meshes to mode facial deformation caused by expression, occlusion and variation in poses and to recognize faces despite large expression, in presence of occlusion and pose variations. Here we represent facial surface by indexed collection of radial geodesic curves on 3D face meshes emanating from nose tip to the boundary of mesh and compare the facial shapes by comparing shapes of their corresponding curves. We use elastic shape analysis for comparing shapes of facial curves because elastic matching seems natural for facial deformation and is robust to challenges such as large facial expressions (especially those with open mouths), large pose variations, missing parts, and partial occlusions due to glasses, hair, and so on. Our results match or improve upon the state-of-the-art methods on two prominent databases:,GavabDB, and Bosphorus, each posing a different type of challenges.
منابع مشابه
3D Face Recognition using Patch Geodesic Derivative Pattern
In this paper, a novel Patch Geodesic Derivative Pattern (PGDP) describing the texture map of a face through its shape data is proposed. Geodesic adjusted textures are encoded into derivative patterns for similarity measurement between two 3D images with different pose and expression variations. An extensive experimental investigation is conducted using the publicly available Bosphorus and BU-3...
متن کاملHybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition
Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local ...
متن کاملPose - Invariant Multimodal ( 2 D + 3 D ) Face Recognition using Geodesic Distance Map
In this paper, an efficient pose-invariant face recognition method is proposed. This method is multimodal means that it uses 2D (color) and 3D (depth) information of a face for recognition. In the first step, the geodesic distances of all face points from a reference point are computed. Then, the face points are mapped from the 3D space to a new 2D space. The proposed mapping is robust under th...
متن کاملFace Recognition : face in video , age invariance , and facial marks
Face Recognition: face in video, age invariance, and facial marks By Unsang Park Automatic face recognition has been extensively studied over the past decades in various domains (e.g., 2D, 3D, and video) resulting in a dramatic improvement. However, face recognition performance severely degrades under pose, lighting and expression variations, occlusion, and aging. Pose and lighting variations a...
متن کاملChapter 5 3 D Face Recognition Using Spatial Relations
Identity recognition using 3D scans of the face has been recently proposed as an alternative or complementary solution to conventional 2D face recognition approaches based on still images or videos. In fact, face representations based on 3D data are expected to be more robust to pose changes and illumination variations than 2D images, thus allowing accurate face recognition in real-world applic...
متن کامل